LZ21 13Y

1/2 type Color CCD Area Sensor for NTSC

DESCRIPTION

LZ21 13Y is a $1 / 2$-type (8.0 mm) solid-state image sensor that consists of PN phote-diodes and CCDS (charge-coupled devices). Having approximately 270000 pixels (horizontal 542 X vertical 492), the sensor provides a high resolution stable color image.

FEATURES

- Number of pixels : 512 (H) X 492 (V)

Pixel pitch : $12.8 \mu \mathrm{~m}(\mathrm{H}) \times 10.0 \mu \mathrm{~m}$ (V)
Number of optical black pixels
: Horizontal; front 2 and rear 28

- Complementary color filters of Mg, G, Cy and Ye
- Low fixed pattern noise and lag
- No sticking and no image distortion
- Blooming suppression structure
- Built-in output amplifier
- Variable electronic shutter (1/W to $1 / 10000 \mathrm{~s}$)

PIN CONNECTIONS

- Compatible with NTSC standard
- Package : 20-pin SDIP[CERDIP](WDIP020-N-0600B)

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	PIN NAME
RD	Reset transistor drain
OD	Output transistor drain
OS	Video output
ϕ_{RS}	Reset transistor gate clink
$\phi_{\mathrm{V} 1}, \phi_{\mathrm{V} 2}, \phi_{\mathrm{V} 3}, \phi_{\mathrm{V} 4}$	Vertical shift register gate clock
$\phi_{\mathrm{H} 1}, \phi_{\mathrm{H} 2}$	Horizontal shift register gate clock
OFD	Overflow drain
PW	P type well
AGND	Analog part ground
CGND	Clock part ground
TI, T2	Test terminal
NC	No connection

ABSOLUTE MAXIMUM RATINGS

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	RATING	UNIT
Output transistor drain voltage	Vod	O to +18	v
Reset transistor drain voltage	Vrd	O to +18	v
Overflow drain voltage	Vofd	o to +55	v
Test terminal, T_{1}	$V_{\text {T1 }}$	-0.3 to +18	v
Test terminal, T2	$V_{\text {T2 }}$	0 to +18	v
Reset gate clock voltage	V_{ϕ} FS	-0.3 to +18	v
Vertical shift register clock voltage	$V_{\phi V}$	-10 to +18	v
Horizontal shift register clock voltage	$V_{\phi H}$	-0.3 to +18	v
Voltage difference between PW and vertical clock	Vpw-V ${ }_{\text {¢ }} \mathrm{V}$	-26 to 0	v
Storage temperature	Tstg	-20 to +80	'c
Operating ambient temperature	Topr	-20 to +70	'c

RECOMMENDED OPERATING CONDITIONS

NOTES :

1. When DC voltage is applied, shutter speed is $1 / \sim$ seconds.
2. When pulse is applied, shutter speed is less than $1 / 60$ seconds.

ELECTRICAL CHARACTERISTIC (Drive method:Field Accumulation)

($\mathrm{Ta}=25^{\circ} \mathrm{C}$, Operating conditions : typical values for the recommended operating conditions, Color temperature of light source : $3200 \mathrm{~K} / \mathrm{IR}$ cut-off filter (CM-500, 1 mmt))

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Photo response non-uniformity	PRNU			10	$\cdot / 0$	2
Carrier saturation	Vsat	450			mV	3
Dark output voltage	Vdark		0.3	3.0	mV	1,4
Dark signal non-uniformity	DSNU		0,6	2.0	mV	1,5
Sensitivity	R	400	520		mV	6
Gamma	Y		1			
Smear ratio	SMR		0.005	0.016	$0 / 0$	7
Image lag	AI			1.0	$\%$	8
Blooming suppression ratio	ABL	1000				9
Output transistor drain current	RoD		4.0	8.0	mA	
Output impedance	Vnoise		300		Ω	
Dark noise		0.2	0.3	mV	10	
OB difference in level				1.0	mV	11
Vector breakup				5.0	$6, \%$	12
Line crawling	3.0	$0 / 0$	13			
Luminance flicker				2.0	$\%$	14

- The standard output voltage is defined as 150 mV by the average output voltage under uniform illumination.
- The standard exposure level is defined when the average output voltage is 150 mV under uniform illumination.
- Vofd should be adjusted to the minimum voltage with that ABL satisfy the specification.

NOTES :

1. $\mathrm{Ta}:+60 \mathrm{C}$
2. The image area is divided into 10×10 segments. The segment's voltage is the average output voltage of all the pixels within the segment. PRNU is defined by (Vmax$V \min) / V o$, where Vmax and Vmin are the maximum and the minimum values of each segment's voltage respectively, when the average output voltage Vo is 150 mV .
3. The output voltage at the carrier peak when the carrier amplitude reaches maximum.
4. The average output voltage under a non-exposure condition.
5. The image area is divided into 10×10 segments. DSNU is defined by (Vdmax-Vdmin) under the non-exposure condition where Vdmax and Vdmin are the maximum and the mınımum values of each segment's voltage, respectively, that is the average output voltage over all pixels in the segment.
6 The average output voltage when a 1 COO lux light source attached with a 90% reflector is imaged by a lens of F4, $f 50 \mathrm{~mm}$.
6. The sensor is adjusted to position a $V / I O$ square at the center of image area where V is the vertical length of the image area. SMR is defined by the ratio of the output voltage detected during the vertical blanking period to the maximum of the pixel voltage in the $\mathrm{V} / \mathrm{I} \mathrm{O}$ square.
8 . The sensor is exposed at the exposure level corresponding to the standard condition preceding non-exposure condition. Al is defined by the ratio between the output voltage measured at the 1st field during the non-exposure period and the standard output voltage.
7. The sensor is adjusted to position a V/l O square at the center of image area. ABL is the ratio between the exposure at the standard condition and the exposure at a point where a blooming is observed.
8. The RMS value of the dark noise (after CDS). The bandwidth range is from 100 kHz to 4.2 MHz , SC trap on.
9. The difference between the average output voltage of the effective area and the $O B$ part under the non-exposure condition.
10. Observed with a vector scope when the color bar chart is imaged under the standard exposure condition.
11. The difference between the avarage output voltage of the $(\mathrm{Mg}+\mathrm{Ye}),(\mathrm{G}+\mathrm{Cy})$ line and the $(\mathrm{Mg}+\mathrm{Cy}),(\mathrm{G}+\mathrm{Ye})$ line under the standard exposure condition.
12. The difference between the average output voltage of the odd field and tha even field.

PIXEL STRUCTURE

COLOR FILTER ARRAY

$(1,492)$

Ye	$\mathbf{C y}$	Ye	$\mathbf{C y}$	Ye
\mathbf{G}	$\mathbf{M g}$	\mathbf{G}	$\mathbf{M g}$	\mathbf{G}
Ye	$\mathbf{C y}$	Ye	Cy	Ye
$\mathbf{M g g}$	\mathbf{G}	$\mathbf{M g}$	\mathbf{G}	$\mathbf{M g}$
Ye	Cy	Ye	Cy	Ye
\mathbf{G}	$\mathbf{M g}$	\mathbf{G}	$\mathbf{M g}$	\mathbf{G}

	Ye	Cy	Ye	Cy	Ye
	Mg	G	Mg	G	MAMg
	Ye	Cy	Ye	Cy	Ye
	G	Mg	G	Mgg	GG
ODD	Y'e	Cy	Y̌e	Cy	Ye
field [Mg	G	Mg	G	Mg

Cy Yere CyCy YeYe				Cy
Mg	G	Mg	G	Mg
Cy	IYe	Cy	Yee	Cy
G	Mg	G	Mg	G
Cy	Ye	Cy	Yee	C
Mg	G	Mg	G	Mg

$(512,492)$

Cy	Ye	Cy	Ye	Cy
G	modg	G	Mgo	G
Cy	Ye	Cy	Ye	Cy
Mg	G	Mg	G	Mg
Cy	IYe	Cy	Yee	Cy
G	Mg	G	Mg	G

$(512,1)$

TIMING DIAGRAM EXAMPLE

HORIZONTAL TRANSFER TIMING

READOUT TIMING

(EVEN FIELD)

